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Motivation

Levin - Wen Lattice models
protected space

oriented surface [ LWa(E)

/storage device)
>

unitary fusion Excited states

category X
anyons on theLattice

/given by simples in E(x)·
concrete Linear equivalence

Z(x) = RepTrbex
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X: x* + 1 + axleddea + abec) =fedo

eva : apa > I coeva: <adav eva : ada Coeva:ada

-simples
#I : T Fij where Xij = fixXx1:

↳ tr : End) =K , id11 Notation : ab = ab

(ii) A pivotal structure on I is a monoidal nat . isomorphism p : idof

allowing to identify := a=va for everyex

&tr (f) tralevaofaidocoeva
,
trff) tralevalidafocoeva) for Feend(a)

viii) p is spherical iff tr (f) triff) traff) for every feEndy(a)

Dimensions : dim(a) : trafida) dimot : Zatiot dim(as
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Cyclically invariant spaces of morphisms

Leta be a spherical multitensor category
cyclically tensorable objects Xa

,
Xe
, ...,

Xa where Kevin and in=i

Hom /4 , XeXa -. Xa) = Hom /Xe , Xa Xa) = Homx (4 , Xa · XnXe)

#[X:Xc .. x] is defined as the limit of all cyclic variations

composition for ae7 a
: H(x] - H(ay] < H(xy]

unit morphism for xeX exeHex] = Homa (1
,
Ex) - coev

112

Hom(
,
x) - ide

Partial traces FEH[yx] Full traces FEH[Ex]
,
Xe Xij

Ptry(f) : = fz ex = H(y] tra(f) : = Fee Hli] = k
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Graphical calculus

Leta be a spherical multitensor category

objects ⑨ 3 ·
L

· Xe Fij9 j X

unit
-----

Morphisms EH[XeXc ... xs]

Partial traces Full traces

pt(f)= traf=
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Graphical calculus

Different graphs may represent the same element in H(x ...]

Edge Fusion :

Unit insertion :

gluing :

EH[X -X2X3Y.Yz]
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Trace Pairing

7 , ) :Her K,ne

Definition
Bases (2:3 and [2i] of H(xa] and HLaE]

[H(xa]xH(z]
are paired if <Li , ]j) = Sij

> Resolution of dual edges over simple objects

: Habec] - Tex HlatbEc]
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Spaces of
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Pick I= Ii ,
InkC I: < Isox

For abl
,
Tail : #Jax

Xe Irr

welding of tubes for -Jax and geHzjby

↑aib XTbic > Tajc

Tube algebra lube/k
,
I) : De Tail
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(i) Algebra with local units : A K-vector space + associative product AOA A

↓ finite-dimensional VCA 7 idempotent ext sit . Vcete

(ii) Locally presented representation : MK-vector space + associative action MOA iM

↓ finite-dimensional WCM 7 idempotent ext st . W
.
e =W

(iii) Morphism of representations : module homomorphisms F(m . f) = F(m) . F

RepA denotes the k-linear category of locally presented representations

For MeRepTube(k ,i) METMa with Mai= M
. Ca
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Let M
,
N e RepTube( ,])

(MN)c : Jes Max Nex Tabic

&
↳

&

T
&Tuber

,
I) acts on MN via an(

Definition Tensor product M N : MN
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Let M
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N
,
L e RepTube( ,])

An : (n)L - (2)

meMa
,
meNG

,
held

,
fe Tabic and se Tedir

Proposition

> pentagon axiom

Lemma
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Monoidal unit and Dualizable objects

Definition
(i) Trivial tube algebra representation

↓ that with actionfde
(ii) Me Rep Tube ( ,2)

Right unitor Mr : Mr >MI
,
malmadeea

Left unitor Am : Mr #M
,
malsemade

(iii) M is called locally finite if Ma finite dimensional fact

f Stelx/Mefo3 is finite
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is Ma : M = Home/Ma
,
k) with action 4. F(m) := 4(m .*),

YeMa
,
meMj FeTa

viil the evaluation morphism

ev: M I ,

ki The coevaluation morphism

coev: <M
,
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Twists and Braiding
a

a 1
,
twist element Tai data , Ta is invertible

,
Taff

Definition M
,
Ne Rep Tube( ,2)

(i) Twist (ii) Braiding

r : M -
, M

, Brin : MN
-

> NM
Mal > Ma

.
To

Theorem X spherical semisimple multitensor category
The data 1

,
F
,
A
,
B ,#) endow RepTudek ,2) with the structure

of a braided monoidal category with twist.
Rep Tubek ,2) widdon tensor category.
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Ind X filtered colimit completion < & objects atxVaxa

Z/Ind?) G (X
,
o) where Xf Ind
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⑨ &

X

: tox "

> Not for te Ind i t Ot 1

&⑨

X

.....a XL" va X X
·& < ⑤ <

&

& a
&
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·
Y
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x
&

· XY
. ·*..

Y

Tensor product XXY to t : ↓Ort
-

XY
·

%

· Y
.
·

&

Y
xn xBraiding kn0y1X : Ox

⑨

· F
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Braided monoidal Equivalence
Theorem (Neshveyer, Yamashita18) There is a linear equivalence

E : Z/Indx) = RepTube

(X
,
0) S H(aX]

&E Irr&

Theorem [J
.,
Yamashita 25] Given X

,
YeZ/IndX)

Exy : E(x) E(y) ~ E(x x Y)

is a well-defined isomorphism of tube algebra representations
and endows E with a braided monoidal structure .

restr
.
on dualizable z/E, Rep Tubex ribbon tensor categories
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